Patterns of Variation Within Self-Incompatibility Loci
نویسندگان
چکیده
منابع مشابه
Recombination and selection at Brassica self-incompatibility loci.
In Brassica species, self-incompatibility is controlled genetically by haplotypes involving two known genes, SLG and SRK, and possibly an as yet unknown gene controlling pollen incompatibility types. Alleles at the incompatibility loci are maintained by frequency-dependent selection, and diversity at SLG and SRK appears to be very ancient, with high diversity at silent and replacement sites, pa...
متن کاملTrans-specificity at loci near the self-incompatibility loci in Arabidopsis.
We compared allele sequences of two loci near the Arabidopsis lyrata self-incompatibility (S) loci with sequences of A. thaliana orthologs and found high numbers of shared polymorphisms, even excluding singletons and sites likely to be highly mutable. This suggests maintenance of entire S-haplotypes for long evolutionary times and extreme recombination suppression in the region.
متن کاملMapping of hybrid incompatibility loci in Nasonia.
According to theory, F(2) hybrid breakdown (lethality or sterility) is due to incompatibilities between interacting genes of the different species (i.e., the breaking up of coadapted gene complexes). Detection of such incompatibilities is particularly straightforward in haplodiploid species, because virgin F(1) hybrid females will produce haploid recombinant F(2) males. This feature allows for ...
متن کاملSelf-incompatibility
There are several different types of self-incompatibility in different flowering plant species, and there has recently been progress in understanding their molecular genetics by using combined molecular and evolutionary approaches. Questions include the mechanism of self-incompatibility (both the nature of the proteins encoded by the genes and whether incompatibility systems all have separate g...
متن کاملVariation in the self-incompatibility response within and among populations of the tropical shrub Witheringia solanacea (Solanaceae).
Breakdown of genetically enforced self-incompatibility (SI), an extremely common and important evolutionary transition in plants, has conventionally been conceived as a qualitative rather than a quantitative change. We evaluated qualitative and quantitative variation in SI for four populations of Witheringia solanacea in Costa Rica, examining growth of self-pollen tubes in pollinations of buds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology and Evolution
سال: 2003
ISSN: 0737-4038,1537-1719
DOI: 10.1093/molbev/msg209